Interfacing the Shure® MX392 Microphones with Polycom® SoundStructure®

Engineering Advisory 1020

Introduction

The MX392/MX393 Specification Sheet on the MX392/MX393 webpage lists the following microphone options to choose from:

<table>
<thead>
<tr>
<th>Available Options</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MX392/C</td>
<td>Cardiod, Black</td>
</tr>
<tr>
<td>MX392/S</td>
<td>Supercardioid, Black</td>
</tr>
<tr>
<td>MX392/O</td>
<td>Omnidirectional, Black</td>
</tr>
<tr>
<td>MX393/C</td>
<td>Cardiod, Black</td>
</tr>
<tr>
<td>MX393/S</td>
<td>Supercardioid, Black</td>
</tr>
<tr>
<td>MX393/O</td>
<td>Omnidirectional, Black</td>
</tr>
</tbody>
</table>

- **MX392 Models**: Surface-mount microphone; includes a programmable membrane on/off switch, logic input/output terminals, an on/off indicator LED, screw terminal connections, and attached unterminated cable.

- **MX393 Models**: Surface-mount microphone; includes a programmable membrane on/off switch, an on/off indicator LED, and a miniature, four pin connector.

This engineering advisory provides information on using the MX392/C, MX392/S, and MX392/O microphones only. The MX393 microphones do not contain any externally controllable logic.
Pinout and Logic Description

The following figure from the Shure MX300 Series User Guide shows the pinout of the MX392 microphone.

MX392 microphone pinout

![MX392 microphone pinout diagram](image)

- **Green** (LOGIC GROUND): Connects to the logic ground of an automatic mixer, switcher, or other equipment.
- **Orange** (LED IN): Set DIP switch 3 on to use LED IN. When shorted to LOGIC GROUND, the LED turns on.
- **White** (SWITCH OUT): Provides TTL logic (0 Vdc or 5 Vdc) in response to the mute button. Set DIP switch 1 for momentary or toggle. When phantom power is applied, logic initializes high (5 Vdc). DIP switch 2 has no effect on SWITCH OUT.

Wiring to SoundStructure

Each microphone needs to connect to a separate Analog channel and a separate Logic channel. In the following example figure, the purple and orange signals represent the analog signals from the microphone. The ground signal in blue represents ground for both the Analog and the logic signals.

Optionally, one can tie the logic ground from the microphone ("GND GRN") to the analog ground ("SHLD WHT"); however, the microphone will perform just as well without a connection to the logic ground as both grounds are tied together inside the microphone. Similarly, the logic ground and the Analog ground are also tied together inside the Polycom® SoundStructure® chassis.
According to the Shure MX300 Series User Guide, "When LED In is shorted to Logic Ground, the LED turns on." Our testing shows that when the Logic Output is off (inactive), the LED In voltage is approximately +4V DC and this voltage keeps the Shure LED turned off. This condition should be valid for all MX392 microphones that are connected to the SoundStructure logic port. If not, you can connect an optional pull-up resistor to the +5V pin on the logic port to ensure the Logic Output voltage returns to a known value when the Logic Output is open inside the SoundStructure. This scenario is shown in the following figure.

The following figure shows all the required connections for up to 11 microphones connected to one logic port. The ground from the logic port is not needed as the internal microphone grounds are tied together with analog and logic grounds also tied together inside the SoundStructure. Not shown in the following
figure is the optional pull-up resistor to +5V because it is not needed to keep the LED In wire biased to +5V for proper operation.

![MX392 DIP Switch Configuration](image)

MX392 DIP Switch Configuration

In order for the MX392 microphone to work correctly with the SoundStructure, DIP Switch 3 needs to be enabled, as shown next.

![DIP Switch Configuration](image)

After the DIP Switch 3 is enabled, DIP Switch 1 controls the Momentary or Toggle capability of the internal switch, as shown in the following figure.
SoundStructure Configuration

After the mics are wired to the chassis, use SoundStructure Studio to configure the chassis. Note that the process is the same regardless of the number of mics or the number of chassis linked via One Big Audio Matrix (OBAM).

Example SoundStructure Microphone Configuration

This example configuration is designed to illuminate the LED when mute is disabled in the SoundStructure and presents the microphone as on when the LED is on. When the LED is off, then the mute is enabled in the SoundStructure and presents the microphone as off when the LED is off. This example configuration also works equally as well for Momentary and Toggle operation.

In this example, we are adding a table microphone. Optionally, you could change the Logic Input and Logic Output Modes to quickly populate the Logic and Events. In this engineering advisory, these steps are done manually so as to better explain what is needed to make the design work.

To configure microphones for SoundStructure:

1. Select a Channel Type and click Add.

 The microphone is displayed in the Channels Defined box, as shown next.
2. Navigate to the **Channels** page and verify that **Table Mic 1** was added.
3 Click the **Edit Logic** button and add a **Digital Logic Input** into the system, as shown in the following example where the input is labeled as **Logic In 1**.

![Digital Logic Input](image1)

4 Navigate to the **Logic** page and verify that the Digital Logic Input was added.

![Logic Input](image2)
5 Add a Digital Logic Output into the system, as shown in the following example where the output is labeled as Logic Out 1.

6 On the Logic page, verify that the Digital Logic Output was added, as shown in the following figure.
7 Navigate to the **Wiring** page and verify that *Logic Input 1* and *Logic Output 1* are assigned to the correct pins, as shown in the following figure. If not, drag them to the correct pins.

8 Navigate to the **Events** page and click the **Add Event** button and add an event for the Logic Input.

9 On the **Events** page, make the following changes:

- Rename the **Event Name** to something that is descriptive. In the following figure, the event is named *Logic In – Mute Table Mic 1*.
- Make sure the source event is correct. In order for the Logic Input pin to be recognized, the source needs to be `digital_gpio_state` and the channel is set to *Logic In 1*.
- Confirm the trigger is set to **Always**.
- Confirm the action is set as **Map Parameter**.
- Confirm the **Invert** check box is checked. This is explained further in the section **Explanation of the Invert Check Box and Logic Input and Negative Logic Output**.

 For this example, we want the microphone switch to mute the input, so the parameter should be set to **mute** and the source should be *Table Mic 1*, or the group of microphones that are intended to be muted should be visible in the drop-down field.
Your event should be similar to the following figure.

Now let's add the Logic Output.

To add the Logic Output:

1. On the Events page, click the Add Event button.

2. Make the following changes
 - Rename the Event Name to something descriptive. In the following figure, the event name is "Logic Output – Mute Table Mic 1".
 - Make sure the source event is correct. For this microphone, muting (mute), gating (am_gate), or camera gating (am_camera_gate) are the most ideal sources to use.
 - Verify that the channel assigned to the source is correct. In this example, Table Mic 1 is the channel we want to use.
 - Confirm the trigger is set to Always.
 - Confirm the action is set as Map Parameter.
 - Confirm the Invert check box is checked. This is explained further in the section Explanation of the Invert Check Box and Logic Input and Negative Logic Output.
 - Set the parameter to digital_gpio_state in order to route the source event to the correct output. The resulting action should be tied to the Logic Out 1 event previously defined, as shown next.
Your event should be similar to the following figure.

To verify that the SoundStructure logic is working correctly, note the Status indicators. When the Shure MX392 mic switch is open, the example `Logic In – Mute Table Mic 1` event source status is high per the details provided in the section Explanation of the Invert Check Box and Logic Input and Negative Logic Output. The action status is low, which indicates that the mute command assigned to `Table Mic 1` is low.

For the example `Logic Out – Mute Table Mic 1`, the event source status is low because the mute is off for `Table Mic 1`. The Action status is high, which reflects the fact that the Logic Output internally to SoundStructure is on or shorted to ground. For a further explanation, see the details provided in the section Explanation of the Invert Check Box and Logic Input and Negative Logic Output.

Finally, after you are finished making your logic and event changes, save the changes to a full preset.

Results – Momentary Action

The default action when the switch is held open is for the LED to be on when mute is disabled, as shown in the following figures with the Events page and the MX392.

Events page with the switch held open
MX392 microphone with mute disabled and LED on

When the switch is held closed, the LED turns off as mute is enabled, as shown in the following figures with the Events page and the MX392.

Events page with the switch held closed

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Status</th>
<th>Source</th>
<th>Parameter</th>
<th>Trigger</th>
<th>Status</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table Mic 1</td>
<td></td>
<td></td>
<td>digitalLogic_mute</td>
<td>always</td>
<td></td>
<td>map_inverted_mute : Table Mic 1</td>
</tr>
</tbody>
</table>

MX392 microphone with mute enabled and LED off

If the function of the Status indicators is unclear, refer to the section Explanation of the Invert Check Box and Logic Input and Negative Logic Output for more information.

Results – Toggle Action

The default action when the mic is first powered is for the LED to be on since the mute is disabled, as shown in the following figures with the Events page and the MX392.

Events page with LED on when first powered on

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Status</th>
<th>Source</th>
<th>Parameter</th>
<th>Trigger</th>
<th>Status</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table Mic 1</td>
<td></td>
<td></td>
<td>digitalLogic_mute</td>
<td>always</td>
<td></td>
<td>map_inverted_mute : Table Mic 1</td>
</tr>
</tbody>
</table>
MX392 microphone with LED on when first powered

When the switch is pushed, then the MX392 registers the button push and keeps the switch closed. The LED turns off as the mute is enabled, as shown in the following figures.

Events page with the switch closed

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Status</th>
<th>Source</th>
<th>Parameter</th>
<th>Trigger</th>
<th>Status</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table Mic 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✔ Logic In – Mute Table Mic 1</td>
<td>Logic In 1</td>
<td></td>
<td>digital_mic_state</td>
<td>always</td>
<td></td>
<td>map_muted_mic : Table Mic 1</td>
</tr>
<tr>
<td>✔ Logic Output – Mute Table Mic 1</td>
<td>Table Mic 1</td>
<td></td>
<td>mute</td>
<td>always</td>
<td></td>
<td>map_muted_mic : Logic Out 1</td>
</tr>
</tbody>
</table>

MX392 microphone with mute enabled and LED off
Explanation of the Invert Check Box and Logic Input and Negative Logic Output

Logic Input

The SoundStructure Logic Input has an internal pull-up resistor to +3.3V DC to ensure the logic status is at a known state when the Logic Input is not pulled to ground. Thus, the logic port always defaults to 1:

![Logic Input Diagram]

In order for the SoundStructure to recognize a state change on the Logic Input, the Logic Input pin must be pulled to ground. Thus, in order for the SoundStructure to recognize that something has occurred on the Logic Input, the voltage must be at ground potential (for example, 0V), which is a negative logic.

- **Green** (LOGIC GROUND): Connects to the logic ground of an automatic mixer, switcher, or other equipment.
- **Orange** (LED IN): Set DIP switch 3 on to use LED IN. When shorted to LOGIC GROUND, the LED turns on.
- **White** (SWITCH OUT): Provides TTL logic (0 Vdc or 5 Vdc) in response to the mute button. Set DIP switch 1 for momentary or toggle. When phantom power is applied, logic initializes high (5 Vdc). DIP switch 2 has no effect on SWITCH OUT.

At first power up, the microphone defaults to +5V DC on the Switch Out wire (high). The SoundStructure logic also defaults to a high voltage although the voltage is +3.3V. When the MX392 is connected to the SoundStructure, the SoundStructure forces the voltage on the Switch Out to be high, albeit +3.3V.

From a logic voltage perspective, closing the switch in the MX392 forces the Logic Input pin to ground which makes the voltage on the Logic Input equal to 0V. Checking the Invert check box when designing the events makes the logic easier to understand such that when the switch is open, the event tied to the switch is not executed. When the switch is closed, the event is executed.

Logic Output

So, when the Logic Output is On, then the Logic Output pin is shorted to ground, as shown in the following figure from the Hardware Installation Guide for the Polycom SoundStructure. Conversely, when
the Logic Output is Off, then the Logic Output pin is open with respect to ground. The Logic Output operates via negative logic such that when the Logic Output is off, the voltage on the LED In wire equals +4V (based on our testing) and when the Logic Output is on, the voltage on the LED In wire equals 0V. Optionally, the purpose of the external 1 kOhm resistor shown in the section Wiring to SoundStructure is to act as a pull-up resistor to +5V such that when the Logic Output is off, the LED In wire to the microphone remains at +5V.

Logic Output Pin

![Logic Output Pin Diagram]

Example

Using the example from the SoundStructure Configuration section, assume that the MX392 button is open, and the Logic In – Mute Table Mic 1 event source status is high based on the SoundStructure internal pull-up resistor to +3.3V DC. The action status is low indicating that the mute command assigned to Table Mic 1 is low since the action was inverted from the event source when the event was created.

For the Logic Out – Mute Table Mic 1, the event source status is low because the mute is off for Table Mic 1. The Action status is high which reflects the fact that the inverted source state is high. Since the mute is disabled, the inverted state is high. As explained in the Logic Output section, an on state in terms of the Logic Output means that the Logic Output is grounded. In terms of the MX392, this turns the LED on.

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Status</th>
<th>Source</th>
<th>Parameter</th>
<th>Trigger</th>
<th>Status</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic In – Mute Table Mic 1</td>
<td>✔️</td>
<td>Logic In</td>
<td>digital_apio_state</td>
<td>always</td>
<td>✔️</td>
<td>map inverted mute ; Table Mic 1</td>
</tr>
<tr>
<td>Logic Output – Mute Table Mic 1</td>
<td>✔️</td>
<td>Table Mic 1</td>
<td>mute</td>
<td>always</td>
<td>✔️</td>
<td>map inverted digital_apio_state ; Logic Out</td>
</tr>
</tbody>
</table>
From a voltage perspective on the Switch Out wire, the voltage is +3.3V DC due to the internal pull-up resistor inside the SoundStructure. On the LED In wire, the on state of the SoundStructure Logic Output means that the weak pull-up resistor inside the MX392 is grounded so the LED In wire is equal to +0V DC which turns on the LED in the MX392 microphone.

Now assume that the MX392 button is closed, and the Logic In – Mute Table Mic 1 event source status is low based on the shorting of the Logic Input pin to ground. The action status is high indicating that the mute command assigned to Table Mic 1 is high since the action was inverted from the event source when the event was created. For the Logic Out – Mute Table Mic 1, the event source status is high because the mute is on for Table Mic 1. The Action status is low which reflects the fact that the inverted source state is low. Since the mute is high (enabled), the inverted state is low. As explained in the Logic Output section, an off state in terms of the Logic Output means that the Logic Output is open. In terms of the MX392, this will turn the LED off.

From a voltage perspective on the Switch Out wire, the voltage is 0V DC due to the closure of the MX392 switch. On the LED In wire, the SoundStructure Logic Output is off which means that there is no path to ground for the MX392 LED so the LED In wire is +4V DC.
Additional Notes

Grounding

The following figure is the MX392 microphone pinout from the Shure MX300 Series User Guide.

![MX392 Microphone Pinout](image)

Based on our testing, the logic ground and the audio ground (Pin 1 of the XLR) are tied together in the MX392. As a result, only one ground connection is needed from the SoundStructure to the mic. The easiest way to ground the mic is via the chassis ground connection on each analog input of the SoundStructure. Inside the SoundStructure, the chassis ground and the logic ground are tied together.

LED In Power

Shure designed the MX392 to power the LED from the Phantom Power. The following figure from [MX392 versus MX393; MX392 wiring scheme](https://www.shure.com) page on the Shure website shows the difference between the MX392 and MX393.

QUESTION:
What is the difference between the MX392 and MX393? Besides the cable not being terminated, your catalog says logic input/output capability. What does the logic offer me?

ANSWER:
The LED on the MX392 can be controlled remotely via two conductors in the MX392 cable. Orange wire is LED In; Green wire is Logic Ground. When Orange is connected to Green, the LED will illuminate. NOTE: The operating voltage/current for the LED is supplied by phantom power... not by the Orange LED In wire.
Reference Drawings

The following figure shows the logic port on SoundStructure.
Polycom, the Polycom logo and the names and marks associated with Polycom products are trademarks and/or service marks of Polycom, Inc. and are registered and/or common law marks in the United States and various other countries. All other trademarks are property of their respective owners. No portion hereof may be reproduced or transmitted in any form or by any means, for any purpose other than the recipient's personal use, without the express written permission of Polycom.

End User License Agreement By installing, copying, or otherwise using this product, you acknowledge that you have read, understand and agree to be bound by the terms and conditions of the End User License Agreement for this product.

Patent Information The accompanying product may be protected by one or more U.S. and foreign patents and/or pending patent applications held by Polycom, Inc.

Open Source Software Used in this Product This product may contain open source software. You may receive the open source software from Polycom up to three (3) years after the distribution date of the applicable product or software at a charge not greater than the cost to Polycom of shipping or distributing the software to you. To receive software information, as well as the open source software code used in this product, contact Polycom by email at OpenSourceVideo@polycom.com.

Disclaimer While Polycom uses reasonable efforts to include accurate and up-to-date information in this document, Polycom makes no warranties or representations as to its accuracy. Polycom assumes no liability or responsibility for any typographical or other errors or omissions in the content of this document.

Limitation of Liability Polycom and/or its respective suppliers make no representations about the suitability of the information contained in this document for any purpose. Information is provided “as is” without warranty of any kind and is subject to change without notice. The entire risk arising out of its use remains with the recipient. In no event shall Polycom and/or its respective suppliers be liable for any direct, consequential, incidental, special, punitive or other damages whatsoever (including without limitation, damages for loss of business profits, business interruption, or loss of business information), even if Polycom has been advised of the possibility of such damages.

Customer Feedback We are striving to improve our documentation quality and we appreciate your feedback. Email your opinions and comments to DocumentationFeedback@polycom.com.

Visit the Polycom Support Center for End User License Agreements, software downloads, product documents, product licenses, troubleshooting tips, service requests, and more.